R/plotAssayPCA.R
plotAssayPCA-methods.Rd
Plot PCA for any assay within a SummarizedExperiment object
plotAssayPCA(x, ...)
# S4 method for class 'SummarizedExperiment'
plotAssayPCA(
x,
assay = "counts",
colour = NULL,
shape = NULL,
size = NULL,
label = "colnames",
show_points = TRUE,
pc_x = 1,
pc_y = 2,
trans = NULL,
n_max = Inf,
tol = sqrt(.Machine$double.eps),
rank = NULL,
...
)
An object containing an assay slot
Passed to geom_text and geom_point
The assay to perform PCA on
The column names to be used for colours and point/label size. Can be fixed values (e.g. size = 3) and can also be a manipulation of a column, e.g. colour = log10(totals)
The column name(s) to be used for determining the shape or size of points. Can also be a fixed value
The column name to be used for labels. Will default to the column names of the SummarizedExperiment
logical(1). Display the points. If TRUE
any labels will
repel. If FALSE
, labels will appear at the exact points
numeric(1) The PC to plot on the x-axis
numeric(1) The PC to plot on the y-axis
character(1). Any transformative function to be applied to the
data before performing the PCA, e.g. trans = "log2"
Subsample the data to this many points before performing PCA
Passed to prcomp
A ggplot2 object
Uses ggplot2 to create a PCA plot for the selected assay. Any numerical
transformation prior to performing the PCA can be specified using the
trans
argument
data("se")
se$treatment <- c("E2", "E2", "E2", "E2DHT", "E2DHT", "E2DHT")
se$sample <- colnames(se)
plotAssayPCA(se, trans = "log1p", colour = "treatment", label = "sample")
plotAssayPCA(
se, trans = "log1p", colour = "treatment", label = "sample",
size = log10(totals), shape = 17
)
plotAssayPCA(
se, trans = "log1p", colour = "treatment", label = "sample",
show_points = FALSE
)